Appearance
背包问题
01背包
有n件物品和一个最多能背重量为w的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是$o(2^n)$,这里的n表示物品数量。
所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!
- 确定dp二维数组的含义:dp[i][j]表示从下标为[0-i]的物品中任意取,放进容量为j的背包,价值总和最大是多少。
- 那么dp[i][j]有两种情况:
- 不放物品,那就是dp[i - 1][j]。
- 放物品,那就是dp[i - 1][j - weight[i]] + value[i]。
- 所以,dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
- 初始化dp数组,首先从dp数组定义出发
- 如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。
- 当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。
代码
滚动数组
把二维dp降为一维dp。
- dp数组含义:dp[j]表示,容量为j的背包,所背的物品价值可以最大为dp[j]。
- dp[j]为 容量为j的背包所背的最大价值,那么如何推导dp[j]呢?
- dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。
- dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i重量 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])
- 此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值。
- 初始化,dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。
- 遍历顺序:倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次!
- 举一个例子:物品0的重量weight[0] = 1,价值value[0] = 15;如果正序遍历,dp[1] = dp[1 - weight[0]] + value[0] = 15;dp[2] = dp[2 - weight[0]] + value[0] = 30
- 此时dp[2]就已经是30了,意味着物品0,被放入了两次,所以不能正序遍历。
- 为什么倒序遍历,就可以保证物品只放入一次呢?
- 倒序就是先算dp[2],dp[2] = dp[2 - weight[0]] + value[0] = 15 (dp数组已经都初始化为0)dp[1] = dp[1 - weight[0]] + value[0] = 15;
- 所以从后往前循环,每次取得状态不会和之前取得状态重合,这样每种物品就只取一次了。
- 那么问题又来了,为什么二维dp数组历的时候不用倒序呢?
- 因为对于二维dp,dp[i][j]都是通过上一层即dp[i - 1][j]计算而来,本层的dp[i][j]并不会被覆盖!
代码
完全背包问题
完全背包和01背包问题唯一不同的地方就是,每种物品有无限件。
给你一个整数数组 coins
表示不同面额的硬币,另给一个整数 amount
表示总金额。
请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0
。
假设每一种面额的硬币有无限个。
题目数据保证结果符合 32 位带符号整数。
示例 1:
**输入:**amount = 5, coins = [1, 2, 5] **输出:**4 **解释:**有四种方式可以凑成总金额: 5=5 5=2+2+1 5=2+1+1+1 5=1+1+1+1+1
377. 组合总和 Ⅳ
给你一个由 不同 整数组成的数组 nums
,和一个目标整数 target
。请你从 nums
中找出并返回总和为 target
的元素组合的个数。
题目数据保证答案符合 32 位整数范围。
示例 1:
**输入:**nums = [1,2,3], target = 4 **输出:**7 解释: 所有可能的组合为: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1) 请注意,顺序不同的序列被视作不同的组合。
总结
背包递推公式
问能否能装满背包(或者最多装多少):dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); ,对应题目如下:
问装满背包有几种方法:dp[j] += dp[j - nums[i]] ,对应题目如下:
- 动态规划:494.目标和(opens new window)
- 动态规划:518. 零钱兑换 II(opens new window)
- 动态规划:377.组合总和Ⅳ(opens new window)
- 动态规划:70. 爬楼梯进阶版(完全背包)(opens new window)
问背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); ,对应题目如下:
问装满背包所有物品的最小个数:dp[j] = min(dp[j - coins[i]] + 1, dp[j]); ,对应题目如下:
#遍历顺序
#01背包
在动态规划:关于01背包问题,你该了解这些! (opens new window)中我们讲解二维dp数组01背包先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。
和动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲解一维dp数组01背包只能先遍历物品再遍历背包容量,且第二层for循环是从大到小遍历。
一维dp数组的背包在遍历顺序上和二维dp数组实现的01背包其实是有很大差异的,大家需要注意!
#完全背包
说完01背包,再看看完全背包。
在动态规划:关于完全背包,你该了解这些! (opens new window)中,讲解了纯完全背包的一维dp数组实现,先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。
但是仅仅是纯完全背包的遍历顺序是这样的,题目稍有变化,两个for循环的先后顺序就不一样了。
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
相关题目如下:
- 求组合数:动态规划:518.零钱兑换II(opens new window)
- 求排列数:动态规划:377. 组合总和 Ⅳ (opens new window)、动态规划:70. 爬楼梯进阶版(完全背包)(opens new window)
如果求最小数,那么两层for循环的先后顺序就无所谓了,相关题目如下:
对于背包问题,其实递推公式算是容易的,难是难在遍历顺序上,如果把遍历顺序搞透,才算是真正理解了。